New open-source analysis software for advanced magnetic resonance spectroscopy

PIRC Lab Meeting July 28th, 2021

Georg Oeltzschner, PhD

Instructor

Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University

F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute

Outline

• Modern MRS data analysis workflow

• Open-source MRS analysis software: A Quest for Standardization & Reproducibility

2019-2021: Expert consensus efforts

Advanced single voxel ¹H magnetic resonance spectroscopy techniques in humans: Experts' consensus recommendations

Gülin Öz 🕱, Dinesh K. Deelchand, Jannie P. Wijnen, Vladimír Mlynárik, Lijing Xin, Ralf Mekle, Ralph Noeske, Tom W.J. Scheenen, Ivan Tkáč, the Experts' Working Group on Advanced Single Voxel 1H MRS

B₀ shimming for in vivo magnetic resonance spectroscopy: Experts' consensus recommendations

Christoph Juchem 🕱, Cristina Cudalbu, Robin A. de Graaf, Rolf Gruetter, Anke Henning, Hoby P. Hetherington, Vincent O. Boer

Motion correction methods for MRS: experts' consensus recommendations

Ovidiu C. Andronesi 🕱, Pallab K. Bhattacharyya, Wolfgang Bogner, In-Young Choi, Aaron T. Hess, Phil Lee, Ernesta M. Meintjes, M. Dylan Tisdall, Maxim Zaitzev, André van der Kouwe

³¹P magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations

Martin Meyerspeer **32**, Chris Boesch, Donnie Cameron, Monika Dezortová, Sean C. Forbes, Arend Heerschap, Jeroen A.L. Jeneson, Hermien E. Kan, Jane Kent, Gwenaël Layec, Jeanine J. Prompers, Harmen Reyngoudt, Alison Sleigh, Ladislav Valkovič, Graham J. Kemp, Experts' Working Group on 31P MR Spectroscopy of Skeletal Muscle ... **See fewer authors** ~

Proton magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations

Martin Krššák 🕿, Lucas Lindeboom, Vera Schrauwen-Hinderling, Lidia S. Szczepaniak, Wim Derave, Jesper Lundbom, Douglas Befroy, Fritz Schick, Jürgen Machann, Roland Kreis, Chris Boesch

Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations

Andrew A. Maudsley 🕿, Ovidiu C. Andronesi, Peter B. Barker, Alberto Bizzi, Wolfgang Bogner, Anke Henning, Sarah J. Nelson, Stefan Posse, Dikoma C. Shungu, Brian J. Soher

Magnetic resonance spectroscopy in the rodent brain: Experts' consensus recommendations

Bernard Lanz Z, Alireza Abaei, Olivier Braissant, In-Young Choi, Cristina Cudalbu, Pierre-Gilles Henry, Rolf Gruetter, Firat Kara, Kejal Kantarci, Phil Lee, Norbert W. Lutz, Małgorzata Marjańska, Vladimír Mlynárik, Volker Rasche, Lijing Xin, Julien Valette, the Experts' Working Group on Magnetic resonance spectroscopy in the rodent brain ... See fewer authors ~

Spectral editing in ¹H magnetic resonance spectroscopy: Experts' consensus recommendations

In-Young Choi 🕱, Ovidiu C. Andronesi, Peter Barker, Wolfgang Bogner, Richard A. E. Edden, Lana G. Kaiser, Phil Lee, Małgorzata Marjańska, Melissa Terpstra, Robin A. de Graaf

Terminology and concepts for the characterization of in vivo MR spectroscopy methods and MR spectra: Background and experts' consensus recommendations

Roland Kreis 🕿, Vincent Boer, In-Young Choi, Cristina Cudalbu, Robin A. de Graaf, Charles Gasparovic, Arend Heerschap, Martin Krššák, Bernard Lanz, Andrew A. Maudsley, Martin Meyerspeer, Jamie Near, Gülin Öz, Stefan Posse, Johannes Slotboom, Melissa Terpstra, Ivan Tkáč, Martin Wilson, Wolfgang Bogner ... See fewer authors A

Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts' consensus recommendations

Jamie Near 🔀, Ashley D. Harris, Christoph Juchem, Roland Kreis, Małgorzata Marjańska, Gülin Öz, Johannes Slotboom, Martin Wilson, Charles Gasparovic

Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts' consensus recommendations

MRSHub – one centralized resource

Home Software & Code Forum Data Links

About Q

Welcome to the MRSHub!

The MRSHub is a curated collection of resources for the analysis of magnetic resonance spectroscopy data. It is maintained by the Committee for MRS Code and Data Sharing of the MR Spectroscopy Study Group of the International Society for Magnetic Resonance in Medicine (ISMRM).

We are actively seeking contributions! If you are interested in advancing open science in MRS, please see our MRSHub User Guide!

Software & Code

The MRSHub code repository collects software packages and functions to process, manipulate, analyse, and display MRS data.

To the MRSHub code listing

Forum

The MRSHub forum is a place for the MRS community to seek support, exchange ideas, ask questions, and collaborate.

To the MRSHub forum

News

Data

The MRSHub data repository collects MRS datasets for demonstration and testing of new methods.

To the MRSHub data listing

Modern MRS data analysis workflow

MRS – Looking beyond water

 The ¹H-MR spectrum contains overlapping molecular signals (1 – 20 millimoles) involved in many different important biochemical processes

From scanner to result

Terminology and concepts for the characterization of in vivo MR spectroscopy methods and MR spectra: Background and experts' consensus recommendations

Roland Kreis 🕿, Vincent Boer, In-Young Choi, Cristina Cudalbu, Robin A. de Graaf, Charles Gasparovic, Arend Heerschap, Martin Krššák, Bernard Lanz, Andrew A. Maudsley, Martin Meyerspeer, Jamie Near, Gülin Öz, Stefan Posse, Johannes Slotboom, Melissa Terpstra, Ivan Tkáč, Martin Wilson, Wolfgang Bogner ... See fewer authors ~

Methodological consensus on clinical proton MRS of the brain: Review and recommendations

Martin Wilson 🕵 Ovidiu Andronesi, Peter B. Barker, Robert Bartha, Alberto Bizzi, Patrick J. Bolan, Kevin M. Brindle, In-Young Choi, Cristina Cudalbu, Ulrike Dydak, Uzay E. Emir, Ramon G. Gonzalez, Stephan Gruber, Rolf Gruetter, Rakesh K. Gupta, Arend Heerschap, Anke Henning, Hoby P. Hetherington, Petra S. Huppi, Ralph E. Hurd, Kejal Kantarci, Risto A Kauppinen, Dennis W. J. Klomp, Rolan Kreis, Marijn J. Kruiskamp, Martin O. Leach, Alexander P. Lin, Peter R. Luijten, Małgorzata Marjańska, Andrew A. Maudsley, Dieter J. Meyerhoff, Carolyn E. Mountford, Paul G. Mullins, James B. Murdoch, Sarah J. Nelson, Ralph Noeske, Gülin Öz, Julie W. Pan, Andrew C. Peet, Harish Poptani, Stefan Posse, Eva-Maria Ratai, Nouha Salibi, Tom W. J. Scheenen, Ian C. P. Smith, Brian J. Soher, Ivan Tkáč, Daniel B. Vigneron, Franklyn A. Howe ... See fewer authors A

Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts' consensus recommendations

Jamie Near 🔀, Ashley D. Harris, Christoph Juchem, Roland Kreis, Małgorzata Marjańska, Gülin Öz, Johannes Slotboom, Martin Wilson, Charles Gasparovic

Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts' consensus recommendations

Raw data

Vendor	File extension	Coils combined?	Averaged?	Contains voxel geometry?
Philips	.sdat /.spar	Yes	Depends	Yes
	.data /.list	No	No	No
Siemens	.rda	Yes	Depends	Yes
	.twix	No	No	Yes
GE	.7	Depends	Depends	Yes
DICOM	.dcm (.ima)	Yes	Depends	Yes

• "Depends"... on sequence developer, software version, exam card settings

- **<u>Preprocessing</u>**: Preparing raw data into a signal that will be modeled
- Operations depend on the raw data format

- **<u>Preprocessing</u>**: Preparing raw data into a signal that will be modeled
- Operations depend on the raw data format

- **<u>Preprocessing</u>**: Preparing raw data into a signal that will be modeled
- Operations depend on the raw data format

- **<u>Preprocessing</u>**: Preparing raw data into a signal that will be modeled
- Operations depend on the raw data format

- **<u>Preprocessing</u>**: Preparing raw data into a signal that will be modeled
- Operations depend on the raw data format

- **<u>Preprocessing</u>**: Preparing raw data into a signal that will be modeled
- Operations depend on the raw data format

- **<u>Preprocessing</u>**: Preparing raw data into a signal that will be modeled
- Operations depend on the raw data format

Modeling

• <u>Modeling</u>: Extract quantitative estimates of signal amplitudes from the spectrum

Linear-combination modeling

4.0

3.0

Chemical shift (ppm)

20

1.0

Weighted sum of (usually simulated) metabolite basis functions

- Model parameters account for...
 - Lineshape (Gauss/Lorentz)
 - frequency and phase shifts
- \ldots complicated by:
 - Signal overlap
 - Broad (short-T₂) macromolecular and lipid signals

Recommended for most ¹H-MRS brain applications

Linear-combination modeling

Peak fitting

Weighted sum of single peaks

- Prior knowledge (AMARES, VOIGT) ٠
 - Chemical shifts
 - Relative amplitude
 - Phase
 - Lineshape (Gauss/Lorentz/Voigt)
- Baseline terms ٠

Rather suited for sparse data, i.e. little spectral overlap (long TE, spectral editing, ³¹P, ¹³C)

Peak integration

Estimation of area under the curve

- Directly by adding up data points
- Integration of a model to the data

Linear-combination nodeling

eak fitting

Peak integration

Only recommended for very sparse data, with little spectral overlap or background signal

Macromolecules

• MM signals should be included in the model, ideally measured (or parametrized)

- Parametrized components
- Defaults used in some software
- May be inadequate

Macromolecules

• MM signals should be included in the model, ideally measured (or parametrized)

Quantification

• Quantification: Converting model parameters into quantitative estimates

Metabolite & water amplitudes

l'issue volume fractions

Quantification

• Quantification: Converting model parameters into quantitative estimates

GM wм CSF

Segmentation

Quantification

- Report tCr ratios <u>and</u> tissue-relaxation-corrected metabolite estimates
- Strong effects on metabolite estimates should appear regardless of reference

Data quality

Visual inspection Lipid contamination "Ghosts" Residual water

Quality metrics Signal-to-noise ratio (SNR) Linewidth (FWHM)

Modeling quality

Visual inspection Model looks like data Noise-like residual

Quality metrics Cramér-Rao lower bounds Goodness of fit

Kreis, NMR Biomed 17:361-381 (2004)

Data quality

Visual inspection Lipid contamination "Ghosts" Residual water

Quality metrics Signal-to-noise ratio (SNR) Linewidth (FWHM)

Modeling quality

Visual inspection Model looks like data Noise-like residual

Quality metrics Cramér-Rao lower bounds Goodness of fit

Kreis, NMR Biomed 17:361-381 (2004)

Data quality

Visual inspection

Lipid contamination "Ghosts" Residual water

Quality metrics Signal-to-noise ratio (SNR) Linewidth (FWHM)

Modeling quality

Visual inspection Model looks like data Noise-like residual

Quality metrics Cramér-Rao lower bounds Goodness of fit

Data quality

Visual inspection

Lipid contamination "Ghosts" Residual water

Quality metrics Signal-to-noise ratio (SNR) Linewidth (FWHM)

Modeling quality

Visual inspection Model looks like data Noise-like residual

Quality metrics Cramér-Rao lower bounds Goodness of fit

Data quality

Visual inspection Lipid contamination "Ghosts" Residual water

Quality metrics Signal-to-noise ratio (SNR) Linewidth (FWHM)

Modeling quality

Visual inspection Model looks like data Noise-like residual

Quality metrics Cramér-Rao lower bounds Goodness of fit

Data quality

Visual inspection Lipid contamination "Ghosts" Residual water

Quality metrics Signal-to-noise ratio (SNR) Linewidth (FWHM)

Modeling quality

Visual inspection Model looks like data Noise-like residual

Quality metrics Cramér-Rao lower bounds Goodness of fit

Data quality

Visual inspection Lipid contamination "Ghosts" Residual water

Quality metrics Signal-to-noise ratio (SNR) Linewidth (FWHM)

Modeling quality

Visual inspection Model looks like data Noise-like residual

Quality metrics Cramér-Rao lower bounds Goodness of fit

Data quality

Visual inspection Lipid contamination "Ghosts" Residual water

Quality metrics Signal-to-noise ratio (SNR) Linewidth (FWHM)

Modeling quality

Visual inspection Model looks like data Noise-like residual

Quality metrics Cramér-Rao lower bounds Goodness of fit

Cramér-Rao lower bounds (CRLB)

- Estimate of <u>minimal</u> uncertainty in model parameter estimation
- Essentially, they are local derivatives of the model function
- Under ideal conditions, they are identical with the standard deviation
- ... but usually, conditions are not identical:

between estimated CRLBs, true CRLBs and standard deviations. Here we demonstrate that, although the CRLBs are theoretically truly a lower bound on the standard deviation (not an equality) for the problem typically encountered in quantification, they are still an adequate approximation to standard deviation as long as the model perfectly characterizes the data. In the case when the macromolecule basis deviates from the measured macromolecules it was shown that the CRLBs can deviate from standard deviations by approximately 50% for N-acetylaspartic acid, creatine and glutamate and of the order of 100% or more for myo-inositol and γ -aminobutyric acid. In the case when the model perfectly reflects the data the CRLBs are within approximately 10% of standard deviations for all metabolites. The result of the CRLB being

Data quality

Visual inspection Lipid contamination "Ghosts" Residual water

Quality metrics Signal-to-noise ratio (SNR) Linewidth (FWHM)

Modeling quality

Visual inspection Model looks like data Noise-like residual

Quality metrics Cramér-Rao lower bounds Goodness of fit

Landheer & Juchem, NMR Biomed 2021

Cramér-Rao lower bounds (CRLB)

• Relative CRLB [%] often used to discard datasets, but that introduces bias against low levels:

- Better practice:
 - Use absolute CRLB
 - Use CRLB as a weighting factor in statistical analysis

Data quality

Visual inspection Lipid contamination "Ghosts" Residual water

Quality metrics Signal-to-noise ratio (SNR) Linewidth (FWHM)

Modeling quality

Visual inspection Model looks like data Noise-like residual

Quality metrics Cramér-Rao lower bounds Goodness of fit

Landheer & Juchem, Magn Reson Med 2016

Goodness of fit

- Not all modeling tools return CRLB
- Other estimates of modeling quality:
 - SD of residual
 - Max/min residual amplitude
 - SD(residual)/SD(noise)

Visual inspection Lipid contamination "Ghosts" Residual water

Quality metrics Signal-to-noise ratio (SNR) Linewidth (FWHM)

Modeling quality

Visual inspection Model looks like data Noise-like residual

Quality metrics Cramér-Rao lower bounds Goodness of fit

Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts' consensus recommendations

Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts' consensus recommendations

2. Acquisition	
a. Pulse sequence	3D localized correlated spectroscopy
b. Volume of interest (VOI) locations	Posterior cingulate gyrus
c. Nominal VOI size [cm ³ , mm ³]	$3 \times 3 \times 3$ cm ³
d. Repetition time (T_R), echo time (T_E) [ms, s]	T_R 1500 ms, initial T_E 30 ms, 0.8 ms increments
e. Total number of excitations or acquisitions per spectrum n time series for kinetic studies . Number of averaged spectra (NA) per time point i. Averaging method (eg block-wise or moving average) ii. Total number of spectra (acquired/in time series)	64 increments with 8 averages per increment
Additional sequence parameters (spectral width in Hz, number of spectral points, frequency offsets) STEAM: mixing time (T_M) MRSI: 2D or 3D, FOV in all directions, matrix size, acceleration factors, sampling method	F1/F2: 2000 Hz/1250 Hz, 1024 points
g. Water suppression method	WET
h. Shimming method, reference peak, and thresholds for "acceptance of shim" chosen	Automated B_0 field mapping followed by manual shimming of water to <14 Hz
i. Triggering or motion correction method (respiratory, peripheral, cardiac triggering, incl. device used and delays)	N/A

Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts' consensus recommendations

Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts' consensus recommendations

Open-source MRS analysis software: A Quest for Standardization and Reproducibility

The wilderness of in-vivo MRS

• MRS was the initial application of the NMR effect (decades before MRI!) – what happened?

Linear-combination modelling in MRS

SPECIAL ISSUE REVIEW ARTICLE

Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts' consensus recommendations

Jamie Near^{1.2} | Ashley D. Harris^{3,4,5} | Christoph Juchem⁶ | Roland Kreis⁷ | Małgorzata Marjańska⁸ | Gülin Öz⁸ | Johannes Slotboom⁹ | Martin Wilson¹⁰ | Charles Gasparovic¹¹ "Linear combination model fitting is the most popular method of analysis and is recommended for most in vivo MRS applications."

"... three important steps in the workflow of ¹H-MRS following data acquisition: *preprocessing*, *spectral analysis*, and *quantification*."

Lack of standardization

Processing & quantification are lab-specific Often insufficiently reported

LCModel is the 'standard'

Black-box (until 02/2021) Discontinued development

LCM is poorly understood

Effects of baseline & MM Algorithmic decisions?

Linear-combination modeling in MRS

Non-linear least-squares optimization

- Weighted sum of metabolite basis functions
- Model parameters account for field homogeneity, small frequency and phase perturbations, etc.
- ... enormously complicated by:
- Broad (short-T₂) macromolecular signals
- Smooth baseline

~
1. Muna hr
10

This is a really difficult (ill-defined) optimization problem!

Currently available LCM software

4.0	3.0	2.0	1.0	
	Chemical s	hift (ppm)		

Algorithm/software	Cost	Language	Open-source?	Published	Citations
LCModel	\$13,300 Free	FORTRAN77	No Yes	1993	3710
QUEST	Free	JAVA	No (jMRUI)	2004	318
AQSES	Free	JAVA	No (jMRUI)	2007	148
Vespa	Free	Python	Yes	No publication	
Tarquin	Free	C++	Yes	2011	287
Osprey	Free	MATLAB	Yes	2020	9
ABfit/spant	Free	R	Yes	2021	2
INSPECTOR	Free	MATLAB	No	2021	6
FSL-MRS	Free	Python	Yes	2021	2

Osprey – a modular open-source workflow

Osprey combines preprocessing, modelling and quantification into one ecosystem

Oeltzschner et al., J Neurosci Methods (2020)

Osprey GUI

Oeltzschner et al., J Neurosci Methods (2020)

Multimodal datasets with Osprey

Direct interface with all other imaging modalities

- Automated co-registration of single-voxel MRS regions of interest with image inputs (DICOM, NIfTI)
- Histogram-based extraction of various image intensity metrics (separate for GM/WM)

Localized MRS-volume-specific image analysis for multimodal neuroimaging studies: MRS, MRSI, PET, fMRI, DWI/DTI, CEST/APT...

¹¹C PiB (amyloid uptake)

Multimodal datasets with Osprey

3T multi-metabolite-edited MRS (HERCULES) & ¹¹C-PiB & flortaucipir PET

- Preliminary analysis suggests elevated GSH levels in MCI
- Currently analyzing associations with local PET metrics

Benchmarking comparison with common tools

- >270 PRESS spectra (TE = 35 ms) analyzed with Osprey, LCModel, Tarquin
- Substantial differences, poor agreement between tools for major metabolites
- Choice of tool introduces substantial variance

Spectral overlap at 3T

Even under excellent measurement conditions, GABA/Glu/Gln/GSH/Asp/Asc/NAAG are very difficult to resolve

Spectral editing resolves overlapping signals

- Spectral editing selectively manipulates signals of interest with RF "editing pulses"
- Overlapping signals get <u>subtracted out</u> to reveal weak signals

Modeling spectral-edited GABA data

Helge J. Zöllner

Despite consensus recommendation to analyse spectral-edited MRS data using linear-combination modelling...

... there is no consensus on **how** this should be done.

Modeling edited GABA (+MM) data

- Testing various strategies to model co-edited macromolecular signal
- Investigate effects of **baseline flexibility** and **fit range**

Modeling edited GABA (+ MM) data

- MM modeling strategies **perform similarly** (improve fit, decrease CV of GABA+)
- Wide fit range and larger knot spacing (more rigid baseline) are favorable

Zöllner et al., NMR Biomed 2021 (in revision)

Characterizing macromolecular background

MM signal measured in 100 subjects across the lifespan (10F, 10M per decade of life)

Modeled with Gaussian peaks at literature value frequencies

No apparent sex or age effects on MM signal

spant

- Modular set of tools to build automated analysis pipelines
- Includes functions for preprocessing, linear-combination modeling, tissue correction, visualization, and simulations

Name	Open source?	Pre- processing	Modeling	Tissue segmentation	OS	Language
LCModel	Yes	Limited	Yes	No	Linux	FORTRAN77
jMRUI	No	Yes (limited)	Yes	No	Win Linux	JAVA
Tarquin	Yes	Yes	Yes	No	Win Linux Mac	C++
Vespa	Yes	Yes	Yes	No	All	Python
FID-A	Yes	Yes	No	No	All	MATLAB
INSPECTOR	No	Yes	Yes	Yes	All	MATLAB
Osprey	Yes	Yes	Yes	Yes	All	MATLAB
spant	Yes	Yes	Yes	Yes	All	R
FSL-MRS	Yes	Yes	Yes	Yes	All	Python

FSL-MRS

FSL-MRS

- Modular set of tools to build automated analysis pipelines
- Includes functions for preprocessing, linear-combination modeling, tissue segmentation, visualization, and simulations
- Interfaces directly with other FSL tools

Name	Open source?	Pre- processing	Modeling	Tissue segmentation	OS	Language
LCModel	Yes	Limited	Yes	No	Linux	FORTRAN77
jMRUI	No	Yes (limited)	Yes	No	Win Linux	JAVA
Tarquin	Yes	Yes	Yes	No	Win Linux Mac	C++
Vespa	Yes	Yes	Yes	No	All	Python
FID-A	Yes	Yes	No	No	All	MATLAB
INSPECTOR	No	Yes	Yes	Yes	All	MATLAB
Osprey	Yes	Yes	Yes	Yes	All	MATLAB
spant	Yes	Yes	Yes	Yes	All	R
FSL-MRS	Yes	Yes	Yes	Yes	All	Python

Committee for MRS Code and Data Sharing

Candace Fleischer Emory University

Standing committee of the ISMRM Study Group MR Spectroscopy

Kelley M. Swanberg Columbia University

Georg Oeltzschner Johns Hopkins University

Alexander P. Lin Harvard Medical School

William T. Clarke University of Oxford

Martin Wilson University of Birmingham

MRSHub – one centralized resource

Home Software & Code Forum Data Links

About Q

Welcome to the MRSHub!

The MRSHub is a curated collection of resources for the analysis of magnetic resonance spectroscopy data. It is maintained by the Committee for MRS Code and Data Sharing of the MR Spectroscopy Study Group of the International Society for Magnetic Resonance in Medicine (ISMRM).

We are actively seeking contributions! If you are interested in advancing open science in MRS, please see our MRSHub User Guide!

Software & Code

The MRSHub code repository collects software packages and functions to process, manipulate, analyse, and display MRS data.

To the MRSHub code listing

Forum

The MRSHub forum is a place for the MRS community to seek support, exchange ideas, ask questions, and collaborate.

To the MRSHub forum

News

Data

The MRSHub data repository collects MRS datasets for demonstration and testing of new methods.

To the MRSHub data listing

NITI-MRS

Vendor	File extension	Coils combined?	Averaged?	Contains voxel geometry?
Philips	.sdat /.spar	Yes	Depends	Yes
	.data /.list	No	No	No
Siemens	.rda	Yes	Depends	Yes
	.twix	No	No	Yes
GE	.7	Depends	Depends	Yes
DICOM	.dcm (.ima)	Yes	Depends	Yes

- "Depends"... on sequence developer, software version, exam card settings
- Software needs to be separately adapted to each individual format/version

NITI-MRS

Common storage specification for MRS/MRSI data Extends on existing NIfTI-2 standard

- Simplified pathway from scanner to final analysis
- Interoperability and modularity of analysis programs
- Easier display and co-interpretation with other modalities
- Format for easy data sharing

William T. Clarke University of Oxford Martin Wilson University of Birmingham

NIfTI-MRS

1-3: Spatial x, y, and z 4: Spectral time domain

.1

tandard NHTT-2 header \struct nfti_2_header Vorifo Data structured defining the fields in the nifti2 header. This binary header should be found at the beginning of a valid mTTT-2 header file.	position information a position information. (Default value for unlocalised data)		
<pre>ut nitiz_leader (/* NITT-1 usage // /* NITT-1 usage initiz_t isioni.hdm; /* (* NITT-1 usage // /* NITT-1 usage initiz_t isioni.hdm; /* (* NITT-1 usage // /* NITT-1 usage /* (* NITT-1 usage // /* (* NITT-1 usage // /* Arr NITT-1 linit_t isioni.hdm; /* (* NITT-1 usage // /* Arr NITT-1 linit_t isioni.hdm; /* (* NITT-1 usage // /* Arr NITT-1 linit_t isioni.hdm; /* (* NITT-1 usage // /* Arr NITT-1 deals isioni.hdm; /* (* NITT-1 usage // /* Arr NITT-1 deals isioni.hdm; /* (* NITT-1 usage /* /* Arr NITT-1 deals isioni.hdm; /* (* NITT-1 usage /* /* Arr NITT-1 deals isioni.hdm; /* (* NITT-1 usage /* /* Arr NITT-1 deals isioni.hdm; /* (* NITT-1 usage /* /* Arr NITT-1 deals isioni.hdm; /* (* NITT-1 usage /* /* /* Arr NITT-1 deals isioni.hdm; /* (* NITT-1 usage /* /* /* Arr NITT-1 deals isioni.hdm; /* (* NITT-1 usage /* /* (* Arr NITT-1 deals isioni.hdm; /* (* NITT-1 usage /* /* (* Arr NITT-1)))))))))))))))))))))))))))))))))))</pre>	 Well time stored in pix_dim[4]. WifTI MRS version stored in intent_name Complex data type specified 		
ON MRS Header Extension			
Required	Standard-defined		
Compulsory	Optional		
ResonantNucleus: e.g. 1H or 31P	Common spectroscopic acquisition		
SpectrometerFrequency: in MHz, e.g. 300	have defined meaning, units, and data types. E.g. EchoTime, TxOffset		
Dimension information	User private		
Optional with dimensions 5-7	Optional		
dim_{n}: Coded use of dim e.g. "DIM_INDIRECT_0"	Arbitrary user-defined meta-data.		
<pre>dim_{n}_header: Dynamic header variables</pre>	Defined structure providing hints to other users. Must <u>NOT</u> redefine standard-defined keys		
	· · · · · · · · · · · · · · · · · · ·		
NIfTI Data Block			
7-dimensional block of complex floa	ting-point numbers		
Dimensions 1-4 Dimension 5	Dimension 6 Dimension 7		

Default - dynamic repeats

Default - indirect frequency

Default - uncombined coils

Water suppressed SVS: example_01.nii.gz

Required Metadata 'ResonantNucleus': ['1H'], 'SpectrometerFrequency': [297.219948],

Dimension Metadata 'dim_5': 'DIM_COIL', 'dim_6': 'DIM_DYN', 'dim_6_use': 'Signal repetitions',

Standard-defined Metadata: Sequence 'RepetitionTime': 5.0.

'RepetitionTime': 5.0, 'EchoTime': 0.011, 'InversionTime': None, 'MixingTime': 0.032,

Standard-defined Metadata: Conversion 'OriginalFile': ['meas_MID310_..._FID115673.dat'], 'ConversionMethod': 'Manual',

'ConversionTime': '2020-12-16T17:14:47.920',

User-defined Metadata 'siemens_sequence_info':

{'Description': 'Sequence and recon binary paths.', 'recon': '%CustomericeProgs%\\uzaylcePrgSpecOnline', 'sequence': '%CustomerSeq%\\uzay_steam_gui}

```
Dynamic headers - Edited SVS:
example_06.nii.gz
```

Required Metadata 'ResonantNucleus': ['1H'], 'SpectrometerFrequency': [123.048686],

Dimension Metadata 'dim_5': 'DIM_COLL', 'dim_6': 'DIM_DYN', 'dim_7_info:')-difference editing, two conditions',

Dimension Metadata: Dynamic Headers 'dim_7_header':

'EditCondition': ['ON', 'OFF']

Standard-defined Metadata: Editing pulse information 'EditPulse':

OFF': {'PulseOffset': 7.8}, 'ON': {'PulseOffset': 1.9} 31P MRSI: example_04.nii.gz

Required Metadata 'ResonantNucleus': ['31P'], 'SpectrometerFrequency': [49.86013],

No Dimension Metadata - no higher dimensions used

Standard-defined Metadata: Sequence 'RepetitionTime': 1.0, 'EchoTime': 0.0023,

Standard-defined Metadata: Device 'Manufacturer': 'SIEMENS', 'ManufacturersModelName': 'TrioTim', 'DeviceSerialNumber': '35031', 'SoftwareVersions': 'syngo MR B17',

Standard-defined Metadata: Subject Red indicates sensitive information 'PatientDoB': '19860808',

'PatientName': 'O3T_CD01_14622', 'PatientSex': 'M', 'PatientWeight': 80.0, 'PatientPosition': 'HFS',

Standard-defined Metadata: Conversion 'OriginalFile': ['Series0006=Inst001=...991.IMA'], 'ConversionMethod': 'Manual', 'ConversionTime': '2021-06-30T15:20:29.442',

Example processing provenance: example_10.nii.gz

ProcessingApplied: [Coil Combination (Method: 'FF coil combination', Details': 'Sf_coil combination', 'reference=wref_internal.nilgz,' 'no prewhiten=True.'

'Program': 'FSL-MRS', 'Version': 'I.1.3+3.g5555bd0', 'Time': '2021-06-30T16:46:18.050'},

Frequency and phase alignment (Method: "Frequency and phase correction", Details: "IsI_mrs.utilis.preproc.nflit_mrs_proc.align, ' 'dim=DIM_DVN, target=None, ppmlim=(0.2, ' '4.2), niter=2, apodize=10.', 'Program: "FSL-MRS', Version: '1.1.343,q5555bd0',

'Time': '2021-06-30T16:46:38.583'},

Alignment of sub-spectra

(Method: 'Alignment of subtraction sub-spectra', Details' 1st_mrs.utils preprice.ntit_mrs_proc.aligndiff, 'dim_ding=DbM_DYA, dim_diff=DbM_EDIT,' 'diff_type=sub, target=None, ppmlim=(0.2, 4.2),' 'Program: 'FELMRS', 'Version': '1.1.343.g5555bd0', 'Ime': 2021-06-30716.464.4302),

Further processing e.g Signal Averaging & Zero-filling

NITI-MRS

MRSHub vision

Vendor-agnostic acquisition

Common sequences Open-source pulses Standardized timing

Clinical workflow integration

scannersDICOM integration of quantitative estimates

In-vivo data

Healthy volunteers across the lifespan Incl. relaxometry, MM

Synthetic data

Arbitrary numbers of artificial spectra including ground truth

Consensus analysis

Models, basis sets Common processing steps Tissue/relaxation correction

New analysis methods

DL-based modeling Adaptive LC modeling Spatial/spectral recon (MRSI)

Final words

Build relationships with sequence and analysis software developers.

Be aware of new acquisition and analysis methods.

Different analyses will yield different results.

Ask others about their data analysis pipeline.

Acknowledgements

Richard A. E. Edden

Peter B. Barker

Helge J. Zöllner

Gwenn S. Smith

Peter C.M. van Zijl Jim Pekar Doris Lin George Sgouros

Sofie Tapper Steve C.N. Hui Muhammad G. Saleh Yulu Song Mark Mikkelsen Kimberly L. Chan Nick Puts

Tao Gong Guangbin Wang

Terri Brawner Kathleen Kahl Ivana Kusevic Joe Gillen Brian J. Soher William T. Clarke Candace Fleischer Kelley M. Swanberg Cristina R. Cudalbu Alexander P. Lin Martin Wilson

goeltzs1@jhmi.edu twitter.com/Oeltzschner twitter.com/OspreyMRS specfitlab.com

NIH / NIMH / NINDS / NIA:

P41 EB015909 (van Zijl/Barker) R01 EB028259 (Barker) R21 AG060245 (Edden) R01 EB016089 (Edden) R01 EB023963 (Edden) K99/R00 AG062230 (Oeltzschner)